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Logarithmic Corrections

e The leading corrections to the area law for black hole entropy are

logarithmic

A 1
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e These corrections can be computed from the low energy theory:
only massless fields contribute.

e In some situations the corrections give non-trivial support for a
known microscopic description.

e In other situations they offer clues to the nature of the unknown
microscopic theory.



Updates in v. 2.0

In principle: computations are straightforward applications of
techniques from the 70’s.

In recent years, Sen (and collaborators) did what we do, and more.
In practice: computations are cumbersome and intransparent.

Updates in v 2.0 focus on short-cuts that add clarity:

e Interactions with background gravity and graviphoton: employ
AdS/CFT, specifically organize fluctuations as chiral primaries.

e Contributions from on-shell states only (no ghosts).

e Remnant of unphysical states: simple boundary states .

Collaborators: C. Keeler and P. Lisbao



Setting

e Consider matter in a general theory with A/ > 2 SUSY.

e In terms of N = 2 fields: one SUGRA multiplet, N' — 2 (massive)
gravitini, ny, vector multiplets, n g hyper multiplets.

e Setting: focus on extremal black holes — it is sufficient to
consider the AdS, x S? near horizon region.

e The final result:

1
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e Example (relevant for microscopics): no correction in N = 4
theory with an arbitrary number of A/ = 4 matter multiplets.



Prelude: Chiral Primaries

e Massless fields in AdS, x S? organize themselves in short
representations of the SU(2|1, 1) supergroup.

e CFT language: consider chiral multiplets where (h, 7) are

1 1
(k,k)®2(k+§,k—§)®(k+1,k—1).

Do

Possible values of k = 1,1, 2, .. .. (k = 3 extra short).
e The actual values are determined by symmetry.

e Alternatively, they can be computed directly by diagonalization of
the field equations.



Spherical Harmonics

e Expansion on S? of a single field component with helicity \:
angular momenta j = ||, [A| + 1, .. ..

e Example: for a gauge field all components organize themselves
into two towers with 7 = 1,2, ... and two towers with y =0, 1, . ..

e The physical components of the vector field components
organize themselves into two towers with 7 = 1,2, .. ..

e So: the set of physical angular momenta in each N/ = 2 multiplet
is unambiguous.

e Example: the A/ = 2 vector multiplet has one vector field and two
real scalars so the physical boson towers are: two with
7=12,...andtwowithy =0,1,....

e Mixing is allowed (for same ) but assembly of towers into chiral
multiplets uniquely determine conformal weights.



The Spectrum of Chiral Primaries

e Result: the spectrum of (h, 7) for all chiral primaries:

Supergravity : 2[(k+2,k+2),2(k+2,k+2),(k+3,k+1)]

Gravitino : 2[(k+2,k+32) ,2(k+2,k+1),(k+ 3,k + 1)
Vector :  2[(k+1,k+1),2(k+2,k+12),(k+2,k)
Hyper: 2[(k+%,k+12),2(k+1,k),(k+32k—3)]

Each towerhas k = 0,1, .. ..

e Previous work identified one more bulk mode in the SUGRA

e Our result: this field exists only as a boundary mode.



Example: Constraints for Gravity

e The graviton in D dimensions has D(D + 1)/2 components, D
gauge symmetries (from diffeomorphisms), ) constraints (eom’s
left after gauge fixing).

e So: a graviton has D(D — 3)/2 physical components.

e In 2D a graviton has —1 degrees of freedom so a graviton and a
scalar combined has no degrees of freedom.

e Details: after gauge fixing some “equations of motion” are in fact
constraints (there are no time derivatives).

e Exception: the constraint is solved by one specific spatial profile
(the zero-mode on AdS,) so one boundary degree of freedom can
be freely specified.

e These boundary modes are physical (standard in AdS/CFT).



Quantum Fluctuations: Strategy

e All contributions from quadratic fluctuations around the classical
geometry take the schematic form
1
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e The quantum corrections are encoded in the heat kernel

D(s) =Tre " = Z e N

e The effective action becomes
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e We need the constant Dy (or K): essentially the 2nd
Seeley-deWitt coefficient aka the trace anomaly.



Simple Heat Kernels in 2D

e The heat kernel for a scalar field on S? is elementary:

1 1 1
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K3(s) =

e A massless scalar field on AdSs involves a continuous spectrum:

1 0.0
Ki(s) = 5 /0 e D5y tanh p dp .

e The local terms in the AdS, heat kernel is identical to S? except
for the sign of the curvature:
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Simple Heat Kernels on AdS, x s

e For a product space heat kernels multiply so for a scalar on

Ad82 X 522
S S S 1 1
K4<S> = K5<S)KA<S> = 1672a452 1 —+ 4_58 + . .
e For a Dirac fermion on AdS, x S?:
1 11
i _ J / _
K4 <S> = 4KS<S>KA(S) = _47'('2&432 (1 — @S + . ) .

e A benchmark for results in N = 2 theory: a “free hyper”

1 1
K0 (o) = 4K3(s) + K s
() = 4G3(s) + K{(s) = 55
e The leading l/s2 singularity cancels: no cosmological constant
for equal number of fermion and bosons.

e The 1/s order also cancels: this is an accident.
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The AdS, Perspective

e The canonical heat kernel on AdS,: a massless field h = 1.

e A field with conformal weight /1 (mass m* = h(h — 1)) and SU(2)
quantum number j (degeneracy 29 + 1):

Ku(h, j;s) = Ka(h=1,j=0;s) e ""=17(25 4+ 1) .

e Afree 4D boson is a tower of 2D bosons with (h, j) = (k+ 1, k)
with £k =0,1,...s0

Ki(s) = Kj(s) -

e The sum over the tower of AdSs fields computes the factor from
the heat kernel on S°.

12



Example: Bulk Vector-Multiplet
e The conformal weights for fields in supergravity are “shifted” from
the free values.

e The fermions in the vector multiplet are canonical but bosons
interact: this is the attractor mechanism.

e The “shifted” sum on S? for all four physical bosons:

2K5(8) —
KX,b(S) _ 47;-465;) Z (e—sk’(kﬁ—f—l)(Qk + 3) _|_ 6—8<k+1)(k‘+2)(2k + 1))
k=0
L (14 tey +1(11)+
= — s+ ... +=-s(l—=s8)+...] .
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e Heat kernel for the full vector multiplet including fermions:

1 1 1
V _

e A 1/s term was generated by interactions.

e The constant term changed sign due to interactions.
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The Vector-Multiplet: Boundary
e Gauge invariance of the vector field requires special
considerations.

e Two components of the vector cancel: unphysical states (violate
gauge condition) and physical (but pure gauge).

e The boundary state: one of the would-be gauge functions is not
normalizable so one state survives.

e Alternatively: one equation of motion is a constraint so one
spatial profile survives.

e The boundary state is a massless boson on S*:
—V'6A; = -V°A=0
e Final result for the heat kernel (bulk+boundary, bosons+fermions):

KV (s) 1 1 1 N 1 1+1 1 1+1
S) = — — — | = —+—
4 A2 \2s  12) 4n2a* \ 25 6 4204 \ s 12
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The Graviton Multiplet

e Bulk modes: physical bosons and fermions all have conformal
weight shifted from the free value. Details are determined by
symmetry.

e Bosonic boundary modes: 4 from 4D diffeomorphisms and 1
from gauge symmetry — 4 4+ 1 = 5 towers of boundary modes.

e Fermionic boundary modes: 2 preserved SUSY’s — 4 towers
of boundary modes.

e Boundary modes are related to gauge symmetries with spectrum
determined by their equation of motion (the gauge conditions).
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e Boundary modes for diffeomorphisms acquire a mass
(g]JV2 + R[J)ﬁj = 0.

and they also mix with gauge fields.

e These towers are related to the pure gauge modes in bulk (rather
then physical bulk modes) so details are not fixed by symmetries.

e For each field we sum over the partial wave tower with masses
(conformal weights) shifted due to interactions.

e The full heat kernel (bulk+boundary, bosons-+fermions):

1 1 1 I 5 1 I 11
e . v _ -
4m2at (<25 12> " <28 6>) 4mlat (s 12)
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Explicit Computations: Bosons

e The bosonic theory is just canonical Einstein gravity coupled to
Maxwell.

e There are 10 + 4 = 14 field components.

e We dualize all 2D bosons to scalars in AdSs and then diagonalise
the resulting action.

e This is messy: the matrix of kinetic terms and the matrix of
mass-terms do not commute — cannot be simultaneously
diagonalised — generalised eigenvalues and generalized
eigen-vectors.

e Ultimately: 14 towers of 2D fields divided into: 5 (projected out by
the gauge condition), 5 (pure gauge), and 4 physical towers.
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Explicit Computations: Results

e The physical fields are true eigenvectors with eigenvalues
(masses) corresponding to the conformal weights already
determined by symmetry.

e The b pairs of unphysical towers have masses
m? = 1(l +1) £ 2,m? = [(l + 1) that generally give irrational
conformal weight.

e The boundary modes are formally pure gauge (but with
non-normalisable gauge function).

e Boundary modes mix: the gauge transformation (I > 0) has an
admixture of S? diff’s (for [ > 1); the S? diff’s for [ > 1 have a
compensating gauge transformation.

e Mixing — physical boundary modes have rational conformal
weight: m* = (Il — 1), I+ 1)({+2) > h=11+2.
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The Harmonic Condition

e Boundary modes are related to an ambiguity when dualizing
higher spin fields to scalars, eg.:

AM — VMAH + GMVVVAL

e Harmonic modes V? A, = (0 can be written in both forms. They

should not be overcounted; and these are boundary modes.
e We dualize gravity as

Hywy = VNV Hu+ Ve n V' Hy

e “Harmonic” modes V2(V? — 2)H, = 0 can be written in both

forms; only the m? = 2 components are boundary modes.
e Some AdS, diff’s are CKVs:

Vs + Vil — gV =0

The boundary modes are precisely those that are not CKVs but
satisfy the “harmonic” condition (V* — 1)¢,, = 0.

e These H {w) @re quadratic holomorphic differentials on AdS.
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The Quadratic Divergence

e After sum over bulk and boundary modes:

1 [ I 11 I 11 I 1 I 1

Kprys = 57 |G =) TW =2) - (= + o)+ v+ o) +na(—- = )

s 12 12 s 12

e The net result for the quadratic divergence (the 1/s term):
alternating sign.

e This term is from interactions in bulk and counting of boundary
modes.

e Special case N > 4 theory (with any matter): quadratic
divergence cancels (a consistency check).

e For N = 3: all divergences cancel for any ny = ny.

e For N = 2: quadratic divergence o< 1 + ny — ny.
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4D Zero Modes

e 4D zero modes: AdS, boundary modes and also massless on
S?.
e Physical origin: the global part of each unbroken gauge
symmetry.
e Zero-modes play a special role in the 4D heat kernel:
D(S) = Z 6_8)\i = Z 6_8)\i —|— N()
i Xi#0
e The path integral reduces to an ordinary integral

eV = / Doy = Vol[gg] ~ e M0

e Correction due to all 0-modes

3 1 1
K, =— 16-2—1)—8-(=—=2)| = —1) .
Sm2at [ ( ) <2 2)] 47r2a4< )

e Note: much of the literature accounts incorrectly for 0-modes.
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The Quadratic Divergence

e After sum over all modes

1 [<1 23 I 11 I 1 I 1

Ronys = 1501 E_EH(N_Z) ("+12) V( 12>+ H(_E_E>

e The R? correction (the constant term) in A/ = 3 SUGRA is
computed by zero-modes.

e Logarithmic corrections to the black hole entropy

|
6S = 5[23— 1N —2) —ny + ng|log Ay .
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Example: Reissner-Nordstrom

The minimal bosonic theory: gravity+Maxwell.

Contributions are the bosonic terms from the N/ = 2 SUGRA
multiplet:

e Four free bulk bosons (2 gravity + 2 gauge field):
05 = —% log Ay .

e Interactions (bulk bosons not quite free): 6.5 = —2log Ay .

e 5 Boundary modes (4 gravity+1 gauge field): 0.5 = —2log Ay .

e Zero-modes: 0.5 = —3log Ap.
Total: 05 = —%1ogAH :

(Fermions in SUGRA multiplet add 0.5 = 32 log Ap)
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Summary

We re-evaluated quadratic fluctuation determinants around an
AdS, x S? near horizon geometry.

Some features of our strategy:

e Focus on states that are on-shell.
e Interactions due to background: encoded in chiral primaries.

e Compute also the renormalization of the gravitational coupling
constant (quadratic divergence, 1/s term in the heat kernel).

e Contributions from bulk (4D), Boundary (2D), and Zero-mode
(0D).

e Explicit decoupling of equation of motion — expressions for all
modes including boundary modes.
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