

Logarithmic Corrections to Black Hole Entropy v. 2.0

Finn Larsen

Michigan Center for Theoretical Physics

Indian Strings Meeting, Puri, December 15, 2014.

Logarithmic Corrections

 The leading corrections to the area law for black hole entropy are logarithmic

$$S = \frac{A}{4G} + \frac{1}{2}D_0 \log A + \dots .$$

- These corrections can be computed from the low energy theory: only massless fields contribute.
- In some situations the corrections give non-trivial support for a known microscopic description.
- In other situations they offer clues to the nature of the unknown microscopic theory.

Updates in v. 2.0

In principle: computations are straightforward applications of techniques from the 70's.

In recent years, Sen (and collaborators) did what we do, and more.

In practice: computations are cumbersome and intransparent.

Updates in v 2.0 focus on short-cuts that add clarity:

- Interactions with background gravity and graviphoton: employ AdS/CFT, specifically organize fluctuations as *chiral primaries*.
- Contributions from on-shell states only (no ghosts).
- Remnant of unphysical states: simple boundary states.

Collaborators: C. Keeler and P. Lisbao

Setting

- ullet Consider matter in a general theory with $\mathcal{N} \geq 2$ SUSY.
- In terms of $\mathcal{N}=2$ fields: one SUGRA multiplet, $\mathcal{N}-2$ (massive) gravitini, n_V vector multiplets, n_H hyper multiplets.
- Setting: focus on extremal black holes \rightarrow it is sufficient to consider the $AdS_2 \times S^2$ near horizon region.
- The final result:

$$\delta S = \frac{1}{12} \left[23 - 11(\mathcal{N} - 2) - n_V + n_H \right] \log A_H.$$

• Example (relevant for microscopics): no correction in $\mathcal{N}=4$ theory with an arbitrary number of $\mathcal{N}=4$ matter multiplets.

Prelude: Chiral Primaries

- Massless fields in $AdS_2 \times S^2$ organize themselves in short representations of the SU(2|1,1) supergroup.
- ullet CFT language: consider chiral multiplets where (h,j) are

$$(k,k) \otimes 2(k+\frac{1}{2},k-\frac{1}{2}) \otimes (k+1,k-1)$$
.

Possible values of $k = \frac{1}{2}, 1, \frac{3}{2}, \dots$ ($k = \frac{1}{2}$ extra short).

- The actual values are determined by symmetry.
- Alternatively, they can be computed directly by diagonalization of the field equations.

Spherical Harmonics

- Expansion on S^2 of a single field component with helicity λ : angular momenta $j=|\lambda|, |\lambda|+1, \ldots$
- Example: for a gauge field **all** components organize themselves into two towers with $j=1,2,\ldots$ and two towers with $j=0,1,\ldots$
- The *physical* components of the vector field components organize themselves into two towers with j = 1, 2, ...
- ullet So: the set of physical angular momenta in each $\mathcal{N}=2$ multiplet is unambiguous.
- Example: the $\mathcal{N}=2$ vector multiplet has one vector field and two real scalars so the *physical* boson towers are: two with $j=1,2,\ldots$ and two with $j=0,1,\ldots$
- Mixing is allowed (for same j) but assembly of towers into chiral multiplets uniquely determine conformal weights.

The Spectrum of Chiral Primaries

ullet Result: the spectrum of (h,j) for all chiral primaries:

Supergravity:
$$2[(k+2, k+2), 2(k+\frac{5}{2}, k+\frac{3}{2}), (k+3, k+1)]$$

Gravitino: $2[(k+\frac{3}{2}, k+\frac{3}{2}), 2(k+2, k+1), (k+\frac{5}{2}, k+\frac{1}{2})]$
Vector: $2[(k+1, k+1), 2(k+\frac{3}{2}, k+\frac{1}{2}), (k+2, k)]$
Hyper: $2[(k+\frac{1}{2}, k+\frac{1}{2}), 2(k+1, k), (k+\frac{3}{2}, k-\frac{1}{2})]$

Each tower has $k = 0, 1, \ldots$

Previous work identified one more bulk mode in the SUGRA multiplet

$$(1,1), 2(\frac{3}{2}, \frac{1}{2}), (2,0).$$

Our result: this field exists only as a boundary mode.

Example: Constraints for Gravity

- The graviton in D dimensions has D(D+1)/2 components, D gauge symmetries (from diffeomorphisms), D constraints (eom's left after gauge fixing).
- So: a graviton has D(D-3)/2 physical components.
- In 2D a graviton has -1 degrees of freedom so a graviton and a scalar combined has no degrees of freedom.
- Details: after gauge fixing some "equations of motion" are in fact constraints (there are no time derivatives).
- Exception: the constraint is solved by one specific spatial profile (the zero-mode on AdS₂) so one boundary degree of freedom can be freely specified.
- These boundary modes are physical (standard in AdS/CFT).

Quantum Fluctuations: Strategy

 All contributions from quadratic fluctuations around the classical geometry take the schematic form

$$e^{-W} = \int \mathcal{D}\phi \ e^{-\phi\Lambda\phi} = \frac{1}{\sqrt{\det\Lambda}} \ .$$

The quantum corrections are encoded in the heat kernel

$$D(s) = \operatorname{Tr} e^{-s\Lambda} = \sum_{i} e^{-s\lambda_i}$$
.

The effective action becomes

$$W = -\frac{1}{2} \int_{\epsilon^2}^{\infty} \frac{ds}{s} D(s) = -\frac{1}{2} \int_{\epsilon^2}^{\infty} \frac{ds}{s} \int d^D x K(s) .$$

• We need the constant D_0 (or K_0): essentially the 2nd Seeley-deWitt coefficient aka the trace anomaly.

Simple Heat Kernels in 2D

• The heat kernel for a scalar field on S^2 is **elementary**:

$$K_S^s(s) = \frac{1}{4\pi a^2} \sum_{k=0}^{\infty} e^{-sk(k+1)} (2k+1) = \frac{1}{4\pi a^2 s} \left(1 + \frac{1}{3}s + \frac{1}{15}s^2 + \dots \right)$$

• A massless scalar field on AdS₂ involves a continuous spectrum:

$$K_A^s(s) = \frac{1}{2\pi a^2} \int_0^\infty e^{-(p^2 + \frac{1}{4})s} p \tanh \pi p \, dp$$
.

• The local terms in the AdS_2 heat kernel is identical to S^2 except for the sign of the curvature:

$$K_A^s(s) = \frac{1}{4\pi a^2 s} \left(1 - \frac{1}{3}s + \frac{1}{15}s^2 + \dots \right) .$$

Simple Heat Kernels on $AdS_2 \times S^2$

• For a product space heat kernels multiply so for a scalar on $AdS_2 \times S^2$:

$$K_4^s(s) = K_S^s(s)K_A^s(s) = \frac{1}{16\pi^2 a^4 s^2} \left(1 + \frac{1}{45}s^2 + \dots\right).$$

• For a Dirac fermion on $AdS_2 \times S^2$:

$$K_4^f(s) = 4K_S^f(s)K_A^f(s) = -\frac{1}{4\pi^2 a^4 s^2} \left(1 - \frac{11}{180}s^2 + \dots\right).$$

• A benchmark for results in $\mathcal{N}=2$ theory: a "free hyper"

$$K_4^{\min}(s) = 4K_4^s(s) + K_4^f(s) = \frac{1}{4\pi^2 a^4 s^2} \cdot \frac{1}{12}s^2$$
.

- ullet The leading $1/s^2$ singularity cancels: no cosmological constant for equal number of fermion and bosons.
- ullet The 1/s order also cancels: this is an accident.

The AdS₂ Perspective

- The canonical heat kernel on AdS₂: a massless field h = 1.
- A field with conformal weight h (mass $m^2 = h(h-1)$) and SU(2) quantum number j (degeneracy 2j+1):

$$K_A(h,j;s) = K_A(h=1,j=0;s) e^{-h(h-1)s}(2j+1)$$
.

ullet A free 4D boson is a tower of 2D bosons with (h,j)=(k+1,k) with $k=0,1,\ldots$ so

$$K_4^s(s) = K_A^s(s) \cdot \frac{1}{4\pi a^2} \sum_{k=0}^{\infty} e^{-sk(k+1)} (2k+1)$$
$$= \frac{1}{16\pi^2 a^4 s^2} \left(1 + \frac{1}{45} s^2 + \dots \right).$$

• The sum over the tower of AdS_2 fields computes the factor from the heat kernel on S^2 .

Example: Bulk Vector-Multiplet

- The conformal weights for fields in supergravity are "shifted" from the free values.
- The fermions in the vector multiplet are canonical but bosons interact: this is the attractor mechanism.
- \bullet The "shifted" sum on S^2 for all four physical bosons:

$$K_4^{V,b}(s) = \frac{2K_A^s(s)}{4\pi a^2} \sum_{k=0}^{\infty} \left(e^{-sk(k+1)} (2k+3) + e^{-s(k+1)(k+2)} (2k+1) \right)$$
$$= \frac{1}{4\pi^2 a^4 s^2} \left(1 + \frac{1}{45} s^2 + \dots + \frac{1}{2} s (1 - \frac{1}{3} s) + \dots \right).$$

Heat kernel for the full vector multiplet including fermions:

$$K_4^V(s) = \frac{1}{4\pi^2 a^4} \left(\frac{1}{2s} - \frac{1}{12} + \dots \right) .$$

- A 1/s term was generated by interactions.
- The constant term changed sign due to interactions.

The Vector-Multiplet: Boundary

- Gauge invariance of the vector field requires special considerations.
- Two components of the vector cancel: unphysical states (violate gauge condition) and physical (but pure gauge).
- The boundary state: one of the would-be gauge functions is not normalizable so *one* state survives.
- Alternatively: one equation of motion is a constraint so one spatial profile survives.
- ullet The boundary state is a massless boson on S^2 :

$$-\nabla^I \delta \mathcal{A}_I = -\nabla^2 \Lambda = 0$$

• Final result for the heat kernel (bulk+boundary, bosons+fermions):

$$K_4^V(s) = \frac{1}{4\pi^2 a^4} \left(\frac{1}{2s} - \frac{1}{12} \right) + \frac{1}{4\pi^2 a^4} \left(\frac{1}{2s} + \frac{1}{6} \right) = \frac{1}{4\pi^2 a^4} \left(\frac{1}{s} + \frac{1}{12} \right)$$

The Graviton Multiplet

- Bulk modes: physical bosons and fermions all have conformal weight shifted from the free value. Details are determined by symmetry.
- *Bosonic boundary modes*: 4 from 4D diffeomorphisms and 1 from gauge symmetry $\rightarrow 4+1=5$ towers of boundary modes.
- *Fermionic boundary modes*: 2 preserved SUSY's \rightarrow 4 towers of boundary modes.
- Boundary modes are related to gauge symmetries with spectrum determined by their equation of motion (the gauge conditions).

Boundary modes for diffeomorphisms acquire a mass

$$(g_{IJ}\nabla^2 + R_{IJ})\xi^J = 0.$$

and they also mix with gauge fields.

- These towers are related to the pure gauge modes in bulk (rather then physical bulk modes) so details are not fixed by symmetries.
- For each field we sum over the partial wave tower with masses (conformal weights) shifted due to interactions.
- The full heat kernel (bulk+boundary, bosons+fermions):

$$K^{\text{grav}} = \frac{1}{4\pi^2 a^4} \left(\left(\frac{1}{2s} - \frac{1}{12} \right) + \left(\frac{1}{2s} - \frac{5}{6} \right) \right) = \frac{1}{4\pi^2 a^4} \left(\frac{1}{s} - \frac{11}{12} \right)$$

Explicit Computations: Bosons

- The bosonic theory is just canonical Einstein gravity coupled to Maxwell.
- There are 10 + 4 = 14 field components.
- We *dualize* all 2D bosons to scalars in AdS₂ and then diagonalise the resulting action.
- This is messy: the matrix of kinetic terms and the matrix of mass-terms do not commute → cannot be simultaneously diagonalised → generalised eigenvalues and generalized eigen-vectors.
- Ultimately: 14 towers of 2D fields divided into: 5 (projected out by the *gauge condition*), 5 (*pure gauge*), and 4 *physical* towers.

Explicit Computations: Results

- The *physical* fields are *true eigenvectors* with eigenvalues (masses) corresponding to the conformal weights already determined by symmetry.
- The 5 *pairs* of *unphysical* towers have masses $m^2 = l(l+1) \pm 2, m^2 = l(l+1)$ that generally give *irrational conformal weight*.
- The **boundary modes** are formally pure gauge (but with non-normalisable gauge function).
- Boundary modes mix: the gauge transformation ($l \ge 0$) has an admixture of S^2 diff's (for $l \ge 1$); the S^2 diff's for $l \ge 1$ have a compensating gauge transformation.
- Mixing \rightarrow physical boundary modes have *rational* conformal weight: $m^2 = l(l-1), (l+1)(l+2) \rightarrow h = l, l+2.$

The Harmonic Condition

 Boundary modes are related to an ambiguity when dualizing higher spin fields to scalars, eg.:

$$A_{\mu} = \nabla_{\mu} A_{\parallel} + \epsilon_{\mu\nu} \nabla^{\nu} A_{\perp}$$

- *Harmonic modes* $\nabla^2 A_0 = 0$ can be written in both forms. They should not be overcounted; and these are boundary modes.
- We dualize gravity as

$$H_{\{\mu\nu\}} = \nabla_{\{\mu} \nabla_{\nu\}} H_{\times} + \nabla_{\{\mu} \epsilon_{\nu\}\lambda} \nabla^{\lambda} H_{+}$$

- "Harmonic" modes $\nabla^2(\nabla^2-2)H_0=0$ can be written in both forms; only the $m^2=2$ components are boundary modes.
- Some AdS₂ diff's are CKVs:

$$\nabla_{\mu}\xi_{\nu} + \nabla_{\nu}\xi_{\mu} - g_{\mu\nu}\nabla^{\lambda}\xi_{\lambda} = 0$$

The *boundary modes* are precisely those that are *not CKVs* but satisfy the "harmonic" condition $(\nabla^2 - 1)\xi_{\mu} = 0$.

• These $H_{\{\mu\nu\}}$ are *quadratic holomorphic differentials* on AdS₂.

The Quadratic Divergence

After sum over bulk and boundary modes:

$$K_{\text{phys}} = \frac{1}{4\pi^2 a^4} \left[\left(\frac{1}{s} - \frac{11}{12} \right) + (\mathcal{N} - 2) \cdot \left(-\frac{1}{s} + \frac{11}{12} \right) + n_V \left(\frac{1}{s} + \frac{1}{12} \right) + n_H \left(-\frac{1}{s} - \frac{1}{12} \right) \right]$$

- The net result for the quadratic divergence (the 1/s term): *alternating sign*.
- This term is from *interactions* in bulk and *counting* of boundary modes.
- Special case $\mathcal{N} \geq 4$ theory (with any matter): *quadratic divergence cancels* (a consistency check).
- For $\mathcal{N}=3$: all divergences cancel for any $n_V=n_H$.
- For $\mathcal{N}=2$: quadratic divergence $\propto 1+n_V-n_H$.

4D Zero Modes

- 4D zero modes: AdS_2 boundary modes and also massless on S^2 .
- Physical origin: the *global part* of each unbroken gauge symmetry.
- Zero-modes play a special role in the 4D heat kernel:

$$D(s) = \sum_{i} e^{-s\lambda_i} = \sum_{\lambda_i \neq 0} e^{-s\lambda_i} + N_0$$

• The path integral reduces to an *ordinary* integral

$$e^{-W} = \int \mathcal{D}\phi_0 = \text{Vol}[\phi_0] \sim \epsilon^{-N_0 \Delta}$$
.

Correction due to all 0-modes

$$K_{zm} = \frac{1}{8\pi^2 a^4} \cdot \left[6 \cdot (2-1) - 8 \cdot (\frac{3}{2} - \frac{1}{2}) \right] = \frac{1}{4\pi^2 a^4} (-1)$$
.

• Note: much of the literature accounts incorrectly for 0-modes.

The Quadratic Divergence

After sum over all modes

$$K_{\text{phys}} = \frac{1}{4\pi^2 a^4} \left[\left(\frac{1}{s} - \frac{23}{12} \right) + (\mathcal{N} - 2) \cdot \left(-\frac{1}{s} + \frac{11}{12} \right) + n_V \left(\frac{1}{s} + \frac{1}{12} \right) + n_H \left(-\frac{1}{s} - \frac{1}{12} \right) \right]$$

- The R^2 correction (the constant term) in $\mathcal{N}=3$ SUGRA is computed by zero-modes.
- Logarithmic corrections to the black hole entropy

$$\delta S = \frac{1}{12} \left[23 - 11(\mathcal{N} - 2) - n_V + n_H \right] \log A_H.$$

Example: Reissner-Nordström

The minimal bosonic theory: gravity+Maxwell.

Contributions are the bosonic terms from the $\mathcal{N}=2$ SUGRA multiplet:

- Four free bulk bosons (2 gravity + 2 gauge field): $\delta S = -\frac{1}{45} \log A_H$.
- ullet Interactions (bulk bosons not quite free): $\delta S = -\frac{3}{2} \log A_H$.
- ullet 5 Boundary modes (4 gravity+1 gauge field): $\delta S = -\frac{5}{6} \log A_H$.
- Zero-modes: $\delta S = -3 \log A_H$.

Total:
$$\delta S = -\frac{241}{45} \log A_H$$
 .

(Fermions in SUGRA multiplet add $\delta S = \frac{1309}{180} \log A_H$)

Summary

We re-evaluated quadratic fluctuation determinants around an $AdS_2 \times S^2$ near horizon geometry.

Some features of our strategy:

- Focus on states that are on-shell.
- Interactions due to background: encoded in chiral primaries.
- Compute also the renormalization of the gravitational coupling constant (quadratic divergence, 1/s term in the heat kernel).
- Contributions from bulk (4D), Boundary (2D), and Zero-mode (0D).
- ullet Explicit decoupling of equation of motion o expressions for all modes including boundary modes.